install.packages('readxl')
install.packages('RcppRoll')
install.packages('data.table')
install.packages('ggplot2')
install.packages('lubridate')
install.packages('scales')
install.packages('forecast')
install.packages('GGally')
install.packages('dplyr')
install.packages('corrplot')
install.packages('ggcorrplot')
install.packages('zoo')
install.packages('M3')
install.packages('ggplot2')
install.packages('urca')
Installing readxl [1.4.0] ... OK [linked cache] Installing RcppRoll [0.3.0] ... OK [linked cache] Installing data.table [1.14.2] ... OK [linked cache] Installing ggplot2 [3.3.6] ... OK [linked cache] Installing lubridate [1.8.0] ... OK [linked cache] Installing scales [1.2.0] ... OK [linked cache] Installing forecast [8.16] ... OK [linked cache] Installing GGally [2.1.2] ... OK [linked cache] Installing dplyr [1.0.9] ... OK [linked cache] Installing corrplot [0.92] ... OK [linked cache] Installing ggcorrplot [0.1.3] ... OK [linked cache] Installing zoo [1.8-10] ... OK [linked cache] Installing M3 [0.3] ... OK [linked cache] Installing ggplot2 [3.3.6] ... OK [linked cache] Installing urca [1.3-0] ... OK [linked cache]
library(readxl)
library(ggplot2)
library(RcppRoll)
library(data.table)
library(ggplot2)
library(lubridate)
library(scales)
library(forecast)
library(GGally)
library(dplyr)
library(corrplot)
library(ggcorrplot)
library(zoo)
library(M3)
library(urca)
To create a sustainable world, it is vital to use sustainable energy sources such as solar energy. In order to use solar energy with maximum benefit, it is necessary to evaluate different alternatives. In this project, the solar power plant named KIVANC 2 GES located in Mersin (between 36-37° north latitude and 33-35° east longitude) is inspected. In this study, the average daily amount of energy produced will be compared and the location where energy can be produced with maximum efficiency will be determined via forecasts.
The raw data were obtained from KIVANC 2 GES. The first of these data includes 4 different metrics (TEMP, REL_HUMIDITY, DSWRF, CLOUD_LOW_LAYER; will be explained in detail in the 2nd part) for 9 different locations, and includes hour-based information between 2/1/2021 and 6/6/2022. In addition, as a second data, the daily energy production amount between these dates was from KIVANC 2 GES. When the data is analyzed in general, one of the striking situations is that between 8.00 pm and 04.00 am, the energy production sees approximately 0 value and peak value between 10.00 am and 04.00 pm. This situation shows us that there is a daily seasonality. While it is quite normal to produce more energy during periods of increased sun exposure, it is quite normal for it not to produce energy when the sun is not present. In addition, it is seen that 4 different metrics affect the production amount in different ways. For example, it is seen that the negative effect of cloud amount on energy production is more than the effect of temperature factor on energy production.
PART 3 ÖZET R kullandık, .. methodları kullandık lag variable olarak şunu kullandık
Data <- read.csv('data/2022-05-30_weather.csv')
wide_data <- dcast(Data, date + hour ~ variable + lat + lon, value.var = "value")
Warning message in dcast(Data, date + hour ~ variable + lat + lon, value.var = "value"): “The dcast generic in data.table has been passed a data.frame and will attempt to redirect to the reshape2::dcast; please note that reshape2 is deprecated, and this redirection is now deprecated as well. Please do this redirection yourself like reshape2::dcast(Data). In the next version, this warning will become an error.”
wide_data <- data.table(wide_data)
wide_data$date <- paste(wide_data$date, wide_data$hour)
production_data <- read.csv('data/2022-05-30_production.csv')
production_data <- data.table(production_data)
production_data$date <- paste(production_data$date, production_data$hour)
production_data <- production_data[,-c(2)]
wide_data$date <- as.POSIXct(wide_data$date,format="%Y-%m-%d %H",tz=Sys.timezone(),tryFormat="%Y-%m-%d %H")
production_data$date <- as.POSIXct(production_data$date,format="%Y-%m-%d %H",tz=Sys.timezone(),tryFormat="%Y-%m-%d %H")
MatrixA <- merge(wide_data, production_data, by="date")
MatrixA <- rbind(MatrixA,wide_data[11569:11592,],fill=TRUE)
MatrixA[,differ:=production]
ggplot(MatrixA,aes(x=date)) + geom_line(aes(y=differ))
unt_test=ur.kpss(MatrixA$differ)
summary(unt_test)
Warning message: “Removed 24 row(s) containing missing values (geom_path).”
####################### # KPSS Unit Root Test # ####################### Test is of type: mu with 13 lags. Value of test-statistic is: 2.8241 Critical value for a significance level of: 10pct 5pct 2.5pct 1pct critical values 0.347 0.463 0.574 0.739
acf(MatrixA[complete.cases(MatrixA)]$differ)
pacf(MatrixA[complete.cases(MatrixA)]$differ)
Value of test-statistic is too high which means data is not stationary. As it can be seen from the lag 24 we should shift it 24 lags
MatrixA[,differ:=production-shift(production,24)]
ggplot(MatrixA,aes(x=date)) + geom_line(aes(y=differ))
unt_test=ur.kpss(MatrixA$differ)
summary(unt_test)
Warning message: “Removed 48 row(s) containing missing values (geom_path).”
####################### # KPSS Unit Root Test # ####################### Test is of type: mu with 13 lags. Value of test-statistic is: 0.0122 Critical value for a significance level of: 10pct 5pct 2.5pct 1pct critical values 0.347 0.463 0.574 0.739
Now the value of test-statistic is low enough which means the data is stationary now.
require(forecast)
acf(MatrixA[complete.cases(MatrixA)]$differ)
pacf(MatrixA[complete.cases(MatrixA)]$differ)
fitted=auto.arima(MatrixA$differ,seasonal=,F,trace=T,stepwise=F,approximation=F)
ARIMA(0,0,0) with zero mean : 73214.34 ARIMA(0,0,0) with non-zero mean : 73216.05 ARIMA(0,0,1) with zero mean : 66464.01 ARIMA(0,0,1) with non-zero mean : 66465.82 ARIMA(0,0,2) with zero mean : 64552.05 ARIMA(0,0,2) with non-zero mean : 64553.92 ARIMA(0,0,3) with zero mean : 63843.9 ARIMA(0,0,3) with non-zero mean : 63845.8 ARIMA(0,0,4) with zero mean : 63638.43 ARIMA(0,0,4) with non-zero mean : 63640.35 ARIMA(0,0,5) with zero mean : 63540.96 ARIMA(0,0,5) with non-zero mean : 63542.89 ARIMA(1,0,0) with zero mean : 63600.86 ARIMA(1,0,0) with non-zero mean : 63602.82 ARIMA(1,0,1) with zero mean : 63417.09 ARIMA(1,0,1) with non-zero mean : 63419.04 ARIMA(1,0,2) with zero mean : 63417.73 ARIMA(1,0,2) with non-zero mean : 63419.68 ARIMA(1,0,3) with zero mean : 63419.4 ARIMA(1,0,3) with non-zero mean : 63421.35 ARIMA(1,0,4) with zero mean : 63418.54 ARIMA(1,0,4) with non-zero mean : 63420.49 ARIMA(2,0,0) with zero mean : 63427.88 ARIMA(2,0,0) with non-zero mean : 63429.82 ARIMA(2,0,1) with zero mean : 63417.83 ARIMA(2,0,1) with non-zero mean : 63419.78 ARIMA(2,0,2) with zero mean : 63419.73 ARIMA(2,0,2) with non-zero mean : 63421.68 ARIMA(2,0,3) with zero mean : Inf ARIMA(2,0,3) with non-zero mean : Inf ARIMA(3,0,0) with zero mean : 63417.14 ARIMA(3,0,0) with non-zero mean : 63419.09 ARIMA(3,0,1) with zero mean : 63420.37 ARIMA(3,0,1) with non-zero mean : 63421.98 ARIMA(3,0,2) with zero mean : 63421.69 ARIMA(3,0,2) with non-zero mean : 63423.63 ARIMA(4,0,0) with zero mean : 63419 ARIMA(4,0,0) with non-zero mean : 63420.95 ARIMA(4,0,1) with zero mean : 63420.8 ARIMA(4,0,1) with non-zero mean : 63422.76 ARIMA(5,0,0) with zero mean : 63419.29 ARIMA(5,0,0) with non-zero mean : 63421.24 Best model: ARIMA(1,0,1) with zero mean
#linear
night<-(c(21,22,23,0,1,2,3))
hourly_production=MatrixA
hourly_production[,trend:=1:.N]
hourly_production[,w_hour:=hour]
hourly_production[,mon:=as.character(month(date,label=T))]
hourly_production[,av_dswrf:=(DSWRF_36.25_33+DSWRF_36.25_33.25+DSWRF_36.25_33.5+DSWRF_36.5_33+DSWRF_36.5_33.25+DSWRF_36.5_33.5+DSWRF_36.75_33+DSWRF_36.75_33.25+DSWRF_36.75_33.5)/9]
hourly_production[,av_cloud:=(CLOUD_LOW_LAYER_36.25_33+CLOUD_LOW_LAYER_36.25_33.25+CLOUD_LOW_LAYER_36.25_33.5+CLOUD_LOW_LAYER_36.5_33+CLOUD_LOW_LAYER_36.5_33.25+CLOUD_LOW_LAYER_36.5_33.5+CLOUD_LOW_LAYER_36.75_33+CLOUD_LOW_LAYER_36.75_33.25+CLOUD_LOW_LAYER_36.75_33.5)/9]
hourly_production[,av_temp:=(TEMP_36.25_33+TEMP_36.25_33.25+TEMP_36.25_33.5+TEMP_36.5_33+TEMP_36.5_33.25+TEMP_36.5_33.5+TEMP_36.75_33+TEMP_36.75_33.25+TEMP_36.75_33.5)/9]
hourly_production[,av_hum:=(REL_HUMIDITY_36.25_33+REL_HUMIDITY_36.25_33.25+REL_HUMIDITY_36.25_33.5+REL_HUMIDITY_36.5_33+REL_HUMIDITY_36.5_33.25+REL_HUMIDITY_36.5_33.5+REL_HUMIDITY_36.75_33+REL_HUMIDITY_36.75_33.25+REL_HUMIDITY_36.75_33.5)/9]
hourly_production[,is_night:=as.numeric(hour %in% night)]
hourly_production[,lag_24:=shift(production,24)]
hourly_production[,differ:=production-lag_24]
Trend: There seems to be a small trend that we think is due to global warming, so we added the trend to our model. In the light of this metric, we can calculate the linear increase in the amount of solar energy production.
is_night: This parameter allows us to distinguish between day and night so that we can easily exclude the 0 values at night in the solar energy production table. In this way, the values between ..am- .. pm is excluded.
w_hour: This metric provides the opportunity to integrate the day-time breakdown of the given data into the model and to differentiate on the basis of day and hour. Since the weather does not change very rapidly, there is no significant difference in energy production from a few days ago. Because of this situation, we used the lagged variables from a few days ago.
av_temp: This metric calculates the average of the temperature amounts for 9 grid points
av_dswrf: This metric calculates the average of the DSWRF values for 9 grid points
av_cloud: This metric calculates the average of the cloud rates for 9 grid points
av_hum: This metric calculates the average of the humidity amounts for 9 grid points
forecast_with_lr=function(fmla, data,forecast_data){
fitted_lm=lm(as.formula(fmla),data)
forecasted4=predict(fitted_lm,forecast_data)
return(list(forecast=as.numeric(forecasted4),model=fitted_lm))
}
#linear regression with only trend w_hour and is_night
past_data=hourly_production[1:11424]
forecast_data=hourly_production[11425:11448]
diff_fmla='differ~trend+w_hour+is_night'
forecasted4=forecast_with_lr(diff_fmla,past_data,forecast_data)
forecast_data[,lm_differ_prediction:=forecasted4$forecast+lag_24]
forecast_data
date | hour | CLOUD_LOW_LAYER_36.25_33 | CLOUD_LOW_LAYER_36.25_33.25 | CLOUD_LOW_LAYER_36.25_33.5 | CLOUD_LOW_LAYER_36.5_33 | CLOUD_LOW_LAYER_36.5_33.25 | CLOUD_LOW_LAYER_36.5_33.5 | CLOUD_LOW_LAYER_36.75_33 | CLOUD_LOW_LAYER_36.75_33.25 | ⋯ | TEMP_36.75_33.25 | TEMP_36.75_33.5 | production | differ | trend | w_hour | mon | is_night | lag_24 | lm_differ_prediction |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
<dttm> | <int> | <dbl> | <dbl> | <dbl> | <dbl> | <dbl> | <dbl> | <dbl> | <dbl> | ⋯ | <dbl> | <dbl> | <dbl> | <dbl> | <int> | <int> | <chr> | <dbl> | <dbl> | <dbl> |
2022-05-29 00:00:00 | 0 | 0.6 | 0.0 | 0 | 1.0 | 0.0 | 0 | 0.1 | 0.3 | ⋯ | 295.283 | 293.183 | NA | NA | 11425 | 0 | May | 1 | 0.00 | -0.02985092 |
2022-05-29 01:00:00 | 1 | 0.4 | 0.0 | 0 | 0.7 | 0.0 | 0 | 0.1 | 0.2 | ⋯ | 294.897 | 292.897 | NA | NA | 11426 | 1 | May | 1 | 0.00 | -0.02999798 |
2022-05-29 02:00:00 | 2 | 0.4 | 0.0 | 0 | 0.6 | 0.0 | 0 | 0.1 | 0.2 | ⋯ | 294.311 | 292.611 | NA | NA | 11427 | 2 | May | 1 | 0.00 | -0.03014504 |
2022-05-29 03:00:00 | 3 | 0.3 | 0.0 | 0 | 0.4 | 0.0 | 0 | 0.1 | 0.2 | ⋯ | 293.918 | 292.318 | NA | NA | 11428 | 3 | May | 1 | 0.00 | -0.03029210 |
2022-05-29 04:00:00 | 4 | 0.0 | 0.0 | 0 | 0.0 | 0.0 | 0 | 0.0 | 0.0 | ⋯ | 293.641 | 292.041 | NA | NA | 11429 | 4 | May | 0 | 0.00 | 0.01278396 |
2022-05-29 05:00:00 | 5 | 0.0 | 0.0 | 0 | 0.0 | 0.0 | 0 | 0.0 | 0.0 | ⋯ | 293.141 | 291.741 | NA | NA | 11430 | 5 | May | 0 | 0.15 | 0.16263690 |
2022-05-29 06:00:00 | 6 | 0.0 | 0.0 | 0 | 0.0 | 0.0 | 0 | 0.0 | 0.0 | ⋯ | 293.359 | 291.859 | NA | NA | 11431 | 6 | May | 0 | 6.99 | 7.00248984 |
2022-05-29 07:00:00 | 7 | 0.0 | 0.0 | 0 | 0.0 | 0.0 | 0 | 0.0 | 0.0 | ⋯ | 296.259 | 294.359 | NA | NA | 11432 | 7 | May | 0 | 26.05 | 26.06234278 |
2022-05-29 08:00:00 | 8 | 0.0 | 0.0 | 0 | 0.0 | 0.0 | 0 | 0.0 | 0.0 | ⋯ | 298.000 | 296.200 | NA | NA | 11433 | 8 | May | 0 | 35.00 | 35.01219572 |
2022-05-29 09:00:00 | 9 | 0.0 | 0.0 | 0 | 0.0 | 0.0 | 0 | 0.0 | 0.0 | ⋯ | 299.314 | 297.414 | NA | NA | 11434 | 9 | May | 0 | 35.00 | 35.01204866 |
2022-05-29 10:00:00 | 10 | 0.0 | 0.0 | 0 | 0.0 | 0.0 | 0 | 0.0 | 0.0 | ⋯ | 300.406 | 298.406 | NA | NA | 11435 | 10 | May | 0 | 35.00 | 35.01190160 |
2022-05-29 11:00:00 | 11 | 0.0 | 0.0 | 0 | 0.0 | 0.0 | 0 | 0.0 | 0.0 | ⋯ | 301.488 | 299.388 | NA | NA | 11436 | 11 | May | 0 | 35.00 | 35.01175454 |
2022-05-29 12:00:00 | 12 | 0.0 | 0.0 | 0 | 0.0 | 0.0 | 0 | 0.0 | 0.0 | ⋯ | 302.424 | 300.224 | NA | NA | 11437 | 12 | May | 0 | 35.00 | 35.01160748 |
2022-05-29 13:00:00 | 13 | 0.0 | 0.0 | 0 | 0.0 | 0.0 | 0 | 0.0 | 0.0 | ⋯ | 303.357 | 301.157 | NA | NA | 11438 | 13 | May | 0 | 35.00 | 35.01146042 |
2022-05-29 14:00:00 | 14 | 0.0 | 0.7 | 0 | 0.0 | 0.0 | 0 | 0.0 | 0.0 | ⋯ | 303.957 | 301.757 | NA | NA | 11439 | 14 | May | 0 | 35.00 | 35.01131336 |
2022-05-29 15:00:00 | 15 | 0.0 | 0.5 | 0 | 0.0 | 0.0 | 0 | 0.0 | 0.0 | ⋯ | 304.436 | 302.236 | NA | NA | 11440 | 15 | May | 0 | 32.60 | 32.61116630 |
2022-05-29 16:00:00 | 16 | 0.0 | 0.0 | 0 | 0.0 | 0.0 | 0 | 0.0 | 0.0 | ⋯ | 304.739 | 301.439 | NA | NA | 11441 | 16 | May | 0 | 26.20 | 26.21101923 |
2022-05-29 17:00:00 | 17 | 0.0 | 0.0 | 0 | 0.0 | 0.0 | 0 | 2.2 | 0.5 | ⋯ | 303.494 | 299.994 | NA | NA | 11442 | 17 | May | 0 | 20.97 | 20.98087217 |
2022-05-29 18:00:00 | 18 | 0.0 | 0.0 | 0 | 1.1 | 0.1 | 0 | 3.1 | 0.7 | ⋯ | 302.094 | 298.994 | NA | NA | 11443 | 18 | May | 0 | 9.47 | 9.48072511 |
2022-05-29 19:00:00 | 19 | 0.0 | 0.0 | 0 | 1.6 | 0.1 | 0 | 2.9 | 0.5 | ⋯ | 300.802 | 297.902 | NA | NA | 11444 | 19 | May | 0 | 1.23 | 1.24057805 |
2022-05-29 20:00:00 | 20 | 0.0 | 0.0 | 0 | 1.3 | 0.1 | 0 | 2.4 | 0.4 | ⋯ | 298.600 | 295.800 | NA | NA | 11445 | 20 | May | 0 | 0.00 | 0.01043099 |
2022-05-29 21:00:00 | 21 | 0.0 | 0.0 | 0 | 1.1 | 0.0 | 0 | 2.0 | 0.4 | ⋯ | 297.329 | 295.229 | NA | NA | 11446 | 21 | May | 1 | 0.00 | -0.03293919 |
2022-05-29 22:00:00 | 22 | 0.0 | 0.0 | 0 | 0.0 | 0.0 | 0 | 0.0 | 0.0 | ⋯ | 296.685 | 294.785 | NA | NA | 11447 | 22 | May | 1 | 0.00 | -0.03308625 |
2022-05-29 23:00:00 | 23 | 0.0 | 0.0 | 0 | 0.0 | 0.0 | 0 | 0.0 | 0.0 | ⋯ | 296.007 | 294.107 | NA | NA | 11448 | 23 | May | 1 | 0.00 | -0.03323332 |
#linear regression with all average variables
past_data=hourly_production[1:11424]
forecast_data=hourly_production[11425:11448]
diff_fmla='differ~trend+w_hour+is_night+av_dswrf+av_temp+av_hum+av_cloud'
forecasted4=forecast_with_lr(diff_fmla,past_data,forecast_data)
forecast_data[,lm_differ_prediction:=forecasted4$forecast+lag_24]
forecast_data
date | hour | CLOUD_LOW_LAYER_36.25_33 | CLOUD_LOW_LAYER_36.25_33.25 | CLOUD_LOW_LAYER_36.25_33.5 | CLOUD_LOW_LAYER_36.5_33 | CLOUD_LOW_LAYER_36.5_33.25 | CLOUD_LOW_LAYER_36.5_33.5 | CLOUD_LOW_LAYER_36.75_33 | CLOUD_LOW_LAYER_36.75_33.25 | ⋯ | trend | w_hour | mon | is_night | lag_24 | av_dswrf | av_cloud | av_temp | av_hum | lm_differ_prediction |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
<dttm> | <int> | <dbl> | <dbl> | <dbl> | <dbl> | <dbl> | <dbl> | <dbl> | <dbl> | ⋯ | <int> | <int> | <chr> | <dbl> | <dbl> | <dbl> | <dbl> | <dbl> | <dbl> | <dbl> |
2022-05-29 00:00:00 | 0 | 0.6 | 0.0 | 0 | 1.0 | 0.0 | 0 | 0.1 | 0.3 | ⋯ | 11425 | 0 | May | 1 | 0.00 | 0.000000 | 0.35555556 | 293.9497 | 39.14444 | -0.32950719 |
2022-05-29 01:00:00 | 1 | 0.4 | 0.0 | 0 | 0.7 | 0.0 | 0 | 0.1 | 0.2 | ⋯ | 11426 | 1 | May | 1 | 0.00 | 0.000000 | 0.24444444 | 293.7748 | 38.88889 | -0.31304136 |
2022-05-29 02:00:00 | 2 | 0.4 | 0.0 | 0 | 0.6 | 0.0 | 0 | 0.1 | 0.2 | ⋯ | 11427 | 2 | May | 1 | 0.00 | 0.000000 | 0.22222222 | 293.4999 | 39.48889 | -0.28773760 |
2022-05-29 03:00:00 | 3 | 0.3 | 0.0 | 0 | 0.4 | 0.0 | 0 | 0.1 | 0.2 | ⋯ | 11428 | 3 | May | 1 | 0.00 | 0.000000 | 0.17777778 | 293.1624 | 39.97778 | -0.25629172 |
2022-05-29 04:00:00 | 4 | 0.0 | 0.0 | 0 | 0.0 | 0.0 | 0 | 0.0 | 0.0 | ⋯ | 11429 | 4 | May | 0 | 0.00 | 0.000000 | 0.00000000 | 292.7077 | 42.17778 | -0.44061800 |
2022-05-29 05:00:00 | 5 | 0.0 | 0.0 | 0 | 0.0 | 0.0 | 0 | 0.0 | 0.0 | ⋯ | 11430 | 5 | May | 0 | 0.15 | 0.000000 | 0.00000000 | 292.4632 | 42.77778 | -0.26908065 |
2022-05-29 06:00:00 | 6 | 0.0 | 0.0 | 0 | 0.0 | 0.0 | 0 | 0.0 | 0.0 | ⋯ | 11431 | 6 | May | 0 | 6.99 | 1.931111 | 0.00000000 | 292.7034 | 43.85556 | 6.55549104 |
2022-05-29 07:00:00 | 7 | 0.0 | 0.0 | 0 | 0.0 | 0.0 | 0 | 0.0 | 0.0 | ⋯ | 11432 | 7 | May | 0 | 26.05 | 30.424444 | 0.00000000 | 295.5257 | 38.63333 | 25.39962305 |
2022-05-29 08:00:00 | 8 | 0.0 | 0.0 | 0 | 0.0 | 0.0 | 0 | 0.0 | 0.0 | ⋯ | 11433 | 8 | May | 0 | 35.00 | 87.006222 | 0.00000000 | 297.3778 | 32.16667 | 34.27973182 |
2022-05-29 09:00:00 | 9 | 0.0 | 0.0 | 0 | 0.0 | 0.0 | 0 | 0.0 | 0.0 | ⋯ | 11434 | 9 | May | 0 | 35.00 | 158.960000 | 0.00000000 | 298.6696 | 29.81111 | 34.31450830 |
2022-05-29 10:00:00 | 10 | 0.0 | 0.0 | 0 | 0.0 | 0.0 | 0 | 0.0 | 0.0 | ⋯ | 11435 | 10 | May | 0 | 35.00 | 706.260000 | 0.00000000 | 299.7616 | 27.48889 | 35.45807716 |
2022-05-29 11:00:00 | 11 | 0.0 | 0.0 | 0 | 0.0 | 0.0 | 0 | 0.0 | 0.0 | ⋯ | 11436 | 11 | May | 0 | 35.00 | 781.066667 | 0.00000000 | 300.6213 | 26.58889 | 35.54498675 |
2022-05-29 12:00:00 | 12 | 0.0 | 0.0 | 0 | 0.0 | 0.0 | 0 | 0.0 | 0.0 | ⋯ | 11437 | 12 | May | 0 | 35.00 | 839.615556 | 0.03333333 | 301.3018 | 25.28889 | 35.60733861 |
2022-05-29 13:00:00 | 13 | 0.0 | 0.0 | 0 | 0.0 | 0.0 | 0 | 0.0 | 0.0 | ⋯ | 11438 | 13 | May | 0 | 35.00 | 879.955556 | 0.02222222 | 302.0903 | 23.44444 | 35.61772506 |
2022-05-29 14:00:00 | 14 | 0.0 | 0.7 | 0 | 0.0 | 0.0 | 0 | 0.0 | 0.0 | ⋯ | 11439 | 14 | May | 0 | 35.00 | 900.953333 | 0.10000000 | 302.4681 | 23.00000 | 35.62304298 |
2022-05-29 15:00:00 | 15 | 0.0 | 0.5 | 0 | 0.0 | 0.0 | 0 | 0.0 | 0.0 | ⋯ | 11440 | 15 | May | 0 | 32.60 | 899.205333 | 0.07777778 | 302.5138 | 23.55556 | 33.21529193 |
2022-05-29 16:00:00 | 16 | 0.0 | 0.0 | 0 | 0.0 | 0.0 | 0 | 0.0 | 0.0 | ⋯ | 11441 | 16 | May | 0 | 26.20 | 747.962222 | 0.00000000 | 302.1057 | 24.76667 | 26.51095000 |
2022-05-29 17:00:00 | 17 | 0.0 | 0.0 | 0 | 0.0 | 0.0 | 0 | 2.2 | 0.5 | ⋯ | 11442 | 17 | May | 0 | 20.97 | 643.155556 | 0.30000000 | 301.1718 | 27.10000 | 21.11817237 |
2022-05-29 18:00:00 | 18 | 0.0 | 0.0 | 0 | 1.1 | 0.1 | 0 | 3.1 | 0.7 | ⋯ | 11443 | 18 | May | 0 | 9.47 | 547.082222 | 0.55555556 | 300.3162 | 29.08889 | 9.46884996 |
2022-05-29 19:00:00 | 19 | 0.0 | 0.0 | 0 | 1.6 | 0.1 | 0 | 2.9 | 0.5 | ⋯ | 11444 | 19 | May | 0 | 1.23 | 457.420000 | 0.56666667 | 299.1576 | 32.68889 | 1.14025000 |
2022-05-29 20:00:00 | 20 | 0.0 | 0.0 | 0 | 1.3 | 0.1 | 0 | 2.4 | 0.4 | ⋯ | 11445 | 20 | May | 0 | 0.00 | 373.395556 | 0.46666667 | 296.2333 | 40.02222 | 0.01580346 |
2022-05-29 21:00:00 | 21 | 0.0 | 0.0 | 0 | 1.1 | 0.0 | 0 | 2.0 | 0.4 | ⋯ | 11446 | 21 | May | 1 | 0.00 | 311.162667 | 0.38888889 | 295.5068 | 40.96667 | 0.18350520 |
2022-05-29 22:00:00 | 22 | 0.0 | 0.0 | 0 | 0.0 | 0.0 | 0 | 0.0 | 0.0 | ⋯ | 11447 | 22 | May | 1 | 0.00 | 0.000000 | 0.00000000 | 295.1517 | 40.05556 | -0.48795142 |
2022-05-29 23:00:00 | 23 | 0.0 | 0.0 | 0 | 0.0 | 0.0 | 0 | 0.0 | 0.0 | ⋯ | 11448 | 23 | May | 1 | 0.00 | 0.000000 | 0.00000000 | 294.7292 | 40.51111 | -0.45106739 |
#linear regression with all average variables except w_hour(hourly seaonality)
past_data=hourly_production[1:11424]
forecast_data=hourly_production[11425:11448]
diff_fmla='differ~trend+is_night+av_dswrf+av_temp+av_hum+av_cloud'
forecasted4=forecast_with_lr(diff_fmla,past_data,forecast_data)
forecast_data[,lm_differ_prediction:=forecasted4$forecast+lag_24]
forecast_data
date | hour | CLOUD_LOW_LAYER_36.25_33 | CLOUD_LOW_LAYER_36.25_33.25 | CLOUD_LOW_LAYER_36.25_33.5 | CLOUD_LOW_LAYER_36.5_33 | CLOUD_LOW_LAYER_36.5_33.25 | CLOUD_LOW_LAYER_36.5_33.5 | CLOUD_LOW_LAYER_36.75_33 | CLOUD_LOW_LAYER_36.75_33.25 | ⋯ | trend | w_hour | mon | is_night | lag_24 | av_dswrf | av_cloud | av_temp | av_hum | lm_differ_prediction |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
<dttm> | <int> | <dbl> | <dbl> | <dbl> | <dbl> | <dbl> | <dbl> | <dbl> | <dbl> | ⋯ | <int> | <int> | <chr> | <dbl> | <dbl> | <dbl> | <dbl> | <dbl> | <dbl> | <dbl> |
2022-05-29 00:00:00 | 0 | 0.6 | 0.0 | 0 | 1.0 | 0.0 | 0 | 0.1 | 0.3 | ⋯ | 11425 | 0 | May | 1 | 0.00 | 0.000000 | 0.35555556 | 293.9497 | 39.14444 | -0.36084816 |
2022-05-29 01:00:00 | 1 | 0.4 | 0.0 | 0 | 0.7 | 0.0 | 0 | 0.1 | 0.2 | ⋯ | 11426 | 1 | May | 1 | 0.00 | 0.000000 | 0.24444444 | 293.7748 | 38.88889 | -0.34110059 |
2022-05-29 02:00:00 | 2 | 0.4 | 0.0 | 0 | 0.6 | 0.0 | 0 | 0.1 | 0.2 | ⋯ | 11427 | 2 | May | 1 | 0.00 | 0.000000 | 0.22222222 | 293.4999 | 39.48889 | -0.31256381 |
2022-05-29 03:00:00 | 3 | 0.3 | 0.0 | 0 | 0.4 | 0.0 | 0 | 0.1 | 0.2 | ⋯ | 11428 | 3 | May | 1 | 0.00 | 0.000000 | 0.17777778 | 293.1624 | 39.97778 | -0.27787107 |
2022-05-29 04:00:00 | 4 | 0.0 | 0.0 | 0 | 0.0 | 0.0 | 0 | 0.0 | 0.0 | ⋯ | 11429 | 4 | May | 0 | 0.00 | 0.000000 | 0.00000000 | 292.7077 | 42.17778 | -0.45448629 |
2022-05-29 05:00:00 | 5 | 0.0 | 0.0 | 0 | 0.0 | 0.0 | 0 | 0.0 | 0.0 | ⋯ | 11430 | 5 | May | 0 | 0.15 | 0.000000 | 0.00000000 | 292.4632 | 42.77778 | -0.27972077 |
2022-05-29 06:00:00 | 6 | 0.0 | 0.0 | 0 | 0.0 | 0.0 | 0 | 0.0 | 0.0 | ⋯ | 11431 | 6 | May | 0 | 6.99 | 1.931111 | 0.00000000 | 292.7034 | 43.85556 | 6.54794600 |
2022-05-29 07:00:00 | 7 | 0.0 | 0.0 | 0 | 0.0 | 0.0 | 0 | 0.0 | 0.0 | ⋯ | 11432 | 7 | May | 0 | 26.05 | 30.424444 | 0.00000000 | 295.5257 | 38.63333 | 25.39441103 |
2022-05-29 08:00:00 | 8 | 0.0 | 0.0 | 0 | 0.0 | 0.0 | 0 | 0.0 | 0.0 | ⋯ | 11433 | 8 | May | 0 | 35.00 | 87.006222 | 0.00000000 | 297.3778 | 32.16667 | 34.27605605 |
2022-05-29 09:00:00 | 9 | 0.0 | 0.0 | 0 | 0.0 | 0.0 | 0 | 0.0 | 0.0 | ⋯ | 11434 | 9 | May | 0 | 35.00 | 158.960000 | 0.00000000 | 298.6696 | 29.81111 | 34.31166611 |
2022-05-29 10:00:00 | 10 | 0.0 | 0.0 | 0 | 0.0 | 0.0 | 0 | 0.0 | 0.0 | ⋯ | 11435 | 10 | May | 0 | 35.00 | 706.260000 | 0.00000000 | 299.7616 | 27.48889 | 35.44002701 |
2022-05-29 11:00:00 | 11 | 0.0 | 0.0 | 0 | 0.0 | 0.0 | 0 | 0.0 | 0.0 | ⋯ | 11436 | 11 | May | 0 | 35.00 | 781.066667 | 0.00000000 | 300.6213 | 26.58889 | 35.52762865 |
2022-05-29 12:00:00 | 12 | 0.0 | 0.0 | 0 | 0.0 | 0.0 | 0 | 0.0 | 0.0 | ⋯ | 11437 | 12 | May | 0 | 35.00 | 839.615556 | 0.03333333 | 301.3018 | 25.28889 | 35.59125594 |
2022-05-29 13:00:00 | 13 | 0.0 | 0.0 | 0 | 0.0 | 0.0 | 0 | 0.0 | 0.0 | ⋯ | 11438 | 13 | May | 0 | 35.00 | 879.955556 | 0.02222222 | 302.0903 | 23.44444 | 35.60355888 |
2022-05-29 14:00:00 | 14 | 0.0 | 0.7 | 0 | 0.0 | 0.0 | 0 | 0.0 | 0.0 | ⋯ | 11439 | 14 | May | 0 | 35.00 | 900.953333 | 0.10000000 | 302.4681 | 23.00000 | 35.61139369 |
2022-05-29 15:00:00 | 15 | 0.0 | 0.5 | 0 | 0.0 | 0.0 | 0 | 0.0 | 0.0 | ⋯ | 11440 | 15 | May | 0 | 32.60 | 899.205333 | 0.07777778 | 302.5138 | 23.55556 | 33.20691007 |
2022-05-29 16:00:00 | 16 | 0.0 | 0.0 | 0 | 0.0 | 0.0 | 0 | 0.0 | 0.0 | ⋯ | 11441 | 16 | May | 0 | 26.20 | 747.962222 | 0.00000000 | 302.1057 | 24.76667 | 26.51089263 |
2022-05-29 17:00:00 | 17 | 0.0 | 0.0 | 0 | 0.0 | 0.0 | 0 | 2.2 | 0.5 | ⋯ | 11442 | 17 | May | 0 | 20.97 | 643.155556 | 0.30000000 | 301.1718 | 27.10000 | 21.12481364 |
2022-05-29 18:00:00 | 18 | 0.0 | 0.0 | 0 | 1.1 | 0.1 | 0 | 3.1 | 0.7 | ⋯ | 11443 | 18 | May | 0 | 9.47 | 547.082222 | 0.55555556 | 300.3162 | 29.08889 | 9.48191216 |
2022-05-29 19:00:00 | 19 | 0.0 | 0.0 | 0 | 1.6 | 0.1 | 0 | 2.9 | 0.5 | ⋯ | 11444 | 19 | May | 0 | 1.23 | 457.420000 | 0.56666667 | 299.1576 | 32.68889 | 1.15947683 |
2022-05-29 20:00:00 | 20 | 0.0 | 0.0 | 0 | 1.3 | 0.1 | 0 | 2.4 | 0.4 | ⋯ | 11445 | 20 | May | 0 | 0.00 | 373.395556 | 0.46666667 | 296.2333 | 40.02222 | 0.04095573 |
2022-05-29 21:00:00 | 21 | 0.0 | 0.0 | 0 | 1.1 | 0.0 | 0 | 2.0 | 0.4 | ⋯ | 11446 | 21 | May | 1 | 0.00 | 311.162667 | 0.38888889 | 295.5068 | 40.96667 | 0.20948057 |
2022-05-29 22:00:00 | 22 | 0.0 | 0.0 | 0 | 0.0 | 0.0 | 0 | 0.0 | 0.0 | ⋯ | 11447 | 22 | May | 1 | 0.00 | 0.000000 | 0.00000000 | 295.1517 | 40.05556 | -0.44810305 |
2022-05-29 23:00:00 | 23 | 0.0 | 0.0 | 0 | 0.0 | 0.0 | 0 | 0.0 | 0.0 | ⋯ | 11448 | 23 | May | 1 | 0.00 | 0.000000 | 0.00000000 | 294.7292 | 40.51111 | -0.40796766 |
ARIMA with all variables
#all variables
fitted
nahead=24
reg_matrix=cbind(MatrixA$TEMP_36.25_33,MatrixA$TEMP_36.25_33.25,MatrixA$TEMP_36.25_33.5,MatrixA$TEMP_36.5_33,MatrixA$TEMP_36.5_33.25,MatrixA$TEMP_36.5_33.5,MatrixA$TEMP_36.75_33,MatrixA$TEMP_36.75_33.25,MatrixA$TEMP_36.75_33.5,MatrixA$CLOUD_LOW_LAYER_36.25_33,MatrixA$CLOUD_LOW_LAYER_36.25_33.25,MatrixA$CLOUD_LOW_LAYER_36.25_33.5,MatrixA$CLOUD_LOW_LAYER_36.5_33,MatrixA$CLOUD_LOW_LAYER_36.5_33.25,MatrixA$CLOUD_LOW_LAYER_36.5_33.5,MatrixA$CLOUD_LOW_LAYER_36.75_33,MatrixA$CLOUD_LOW_LAYER_36.75_33.25,MatrixA$CLOUD_LOW_LAYER_36.75_33.5,MatrixA$REL_HUMIDITY_36.25_33,MatrixA$REL_HUMIDITY_36.25_33.25,MatrixA$REL_HUMIDITY_36.25_33.5,MatrixA$REL_HUMIDITY_36.5_33,MatrixA$REL_HUMIDITY_36.5_33.25,MatrixA$REL_HUMIDITY_36.5_33.5,MatrixA$REL_HUMIDITY_36.75_33,MatrixA$REL_HUMIDITY_36.75_33.25,MatrixA$REL_HUMIDITY_36.75_33.5,MatrixA$DSWRF_36.25_33,MatrixA$DSWRF_36.25_33.25,MatrixA$DSWRF_36.25_33.5,MatrixA$DSWRF_36.5_33,MatrixA$DSWRF_36.5_33.25,MatrixA$DSWRF_36.5_33.5,MatrixA$DSWRF_36.75_33,MatrixA$DSWRF_36.75_33.25,MatrixA$DSWRF_36.75_33.5)
fitted_arimax=auto.arima(MatrixA$differ,xreg=reg_matrix,seasonal=F,trace=T,stepwise=F,approximation=F)
forecasted1=forecast(fitted_arimax,xreg=tail(reg_matrix,24), h=24)
forecasted1
Series: MatrixA$differ ARIMA(1,0,1) with zero mean Coefficients: ar1 ma1 0.6822 0.1712 s.e. 0.0090 0.0122 sigma^2 = 15.25: log likelihood = -31705.54 AIC=63417.08 AICc=63417.09 BIC=63439.11
ARIMA(0,0,0) with zero mean : 72637.67 ARIMA(0,0,0) with non-zero mean : 72631.69 ARIMA(0,0,1) with zero mean : 66144.91 ARIMA(0,0,1) with non-zero mean : 66139.19 ARIMA(0,0,2) with zero mean : 64360.12 ARIMA(0,0,2) with non-zero mean : 64354.12 ARIMA(0,0,3) with zero mean : 63718.69 ARIMA(0,0,3) with non-zero mean : 63712.65 ARIMA(0,0,4) with zero mean : 63540.03 ARIMA(0,0,4) with non-zero mean : 63534.7 ARIMA(0,0,5) with zero mean : 63455.17 ARIMA(0,0,5) with non-zero mean : 63450.83 ARIMA(1,0,0) with zero mean : 63554.43 ARIMA(1,0,0) with non-zero mean : 63551.72 ARIMA(1,0,1) with zero mean : 63360.93 ARIMA(1,0,1) with non-zero mean : 63357.27 ARIMA(1,0,2) with zero mean : 63362.47 ARIMA(1,0,2) with non-zero mean : 63358.88 ARIMA(1,0,3) with zero mean : 63364.45 ARIMA(1,0,3) with non-zero mean : 63360.86 ARIMA(1,0,4) with zero mean : 63364.23 ARIMA(1,0,4) with non-zero mean : 63360.59 ARIMA(2,0,0) with zero mean : 63370.37 ARIMA(2,0,0) with non-zero mean : 63366.53 ARIMA(2,0,1) with zero mean : 63362.48 ARIMA(2,0,1) with non-zero mean : 63358.89 ARIMA(2,0,2) with zero mean : Inf ARIMA(2,0,2) with non-zero mean : Inf ARIMA(2,0,3) with zero mean : 63366.13 ARIMA(2,0,3) with non-zero mean : 63362.53 ARIMA(3,0,0) with zero mean : 63362.37 ARIMA(3,0,0) with non-zero mean : 63358.78 ARIMA(3,0,1) with zero mean : 63364.6 ARIMA(3,0,1) with non-zero mean : 63360.98 ARIMA(3,0,2) with zero mean : 63366.19 ARIMA(3,0,2) with non-zero mean : 63362.59 ARIMA(4,0,0) with zero mean : 63364.38 ARIMA(4,0,0) with non-zero mean : 63360.79 ARIMA(4,0,1) with zero mean : 63365.7 ARIMA(4,0,1) with non-zero mean : 63362.12 ARIMA(5,0,0) with zero mean : 63365.26 ARIMA(5,0,0) with non-zero mean : 63361.63 Best model: Regression with ARIMA(1,0,1) errors
Point Forecast Lo 80 Hi 80 Lo 95 Hi 95 11449 -0.23985392 -7.783281 7.303573 -11.77653 11.29682 11450 -0.22361060 -7.767038 7.319817 -11.76029 11.31307 11451 -0.20814707 -7.751574 7.335280 -11.74482 11.32853 11452 -0.27234178 -7.815769 7.271086 -11.80902 11.26433 11453 -0.23733378 -7.780761 7.306094 -11.77401 11.29934 11454 -0.18865640 -7.732084 7.354771 -11.72533 11.34802 11455 -0.22368016 -7.767108 7.319747 -11.76036 11.31300 11456 -0.12170396 -7.665131 7.421723 -11.65838 11.41497 11457 -0.11418910 -7.657616 7.429238 -11.65087 11.42249 11458 -0.13827462 -7.681702 7.405153 -11.67495 11.39840 11459 0.14588678 -7.397541 7.689314 -11.39079 11.68256 11460 0.15793433 -7.385493 7.701362 -11.37874 11.69461 11461 0.14613707 -7.397290 7.689564 -11.39054 11.68281 11462 0.10867346 -7.434754 7.652101 -11.42800 11.64535 11463 -0.06957341 -7.613001 7.473854 -11.60625 11.46710 11464 -0.35206589 -7.895493 7.191361 -11.88874 11.18461 11465 -1.41030541 -8.953733 6.133122 -12.94698 10.12637 11466 -1.09452271 -8.637950 6.448905 -12.63120 10.44215 11467 -1.39384236 -8.937270 6.149585 -12.93052 10.14283 11468 -1.31873902 -8.862166 6.224688 -12.85542 10.21794 11469 -0.96778364 -8.511211 6.575644 -12.50446 10.56889 11470 -0.69214255 -8.235570 6.851285 -12.22882 10.84453 11471 -0.06632151 -7.609749 7.477106 -11.60300 11.47036 11472 -0.07023206 -7.613659 7.473195 -11.60691 11.46644
temporary1=copy(MatrixA)
temporary1[,predicted_differ:=differ]
test1=MatrixA[11425:11448]
test1[,production:=NA]
test1[,predicted_differ:=as.numeric(forecasted1$mean)]
temporary1[11425:11448]=test1
temporary1[,forecastval:=predicted_differ+shift(production,24)]
temporary1[11400:11450,]
date | hour | CLOUD_LOW_LAYER_36.25_33 | CLOUD_LOW_LAYER_36.25_33.25 | CLOUD_LOW_LAYER_36.25_33.5 | CLOUD_LOW_LAYER_36.5_33 | CLOUD_LOW_LAYER_36.5_33.25 | CLOUD_LOW_LAYER_36.5_33.5 | CLOUD_LOW_LAYER_36.75_33 | CLOUD_LOW_LAYER_36.75_33.25 | ⋯ | TEMP_36.5_33 | TEMP_36.5_33.25 | TEMP_36.5_33.5 | TEMP_36.75_33 | TEMP_36.75_33.25 | TEMP_36.75_33.5 | production | differ | predicted_differ | forecastval |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
<dttm> | <int> | <dbl> | <dbl> | <dbl> | <dbl> | <dbl> | <dbl> | <dbl> | <dbl> | ⋯ | <dbl> | <dbl> | <dbl> | <dbl> | <dbl> | <dbl> | <dbl> | <dbl> | <dbl> | <dbl> |
2022-05-27 23:00:00 | 23 | 3.6 | 0.3 | 0.0 | 0.0 | 1.8 | 2.3 | 3.4 | 4.1 | ⋯ | 290.951 | 293.551 | 296.651 | 289.651 | 294.351 | 292.751 | 0.00 | 0.00 | 0.00000000 | 0.00000000 |
2022-05-28 00:00:00 | 0 | 4.0 | 0.3 | 0.0 | 0.6 | 1.2 | 1.6 | 2.2 | 3.7 | ⋯ | 290.396 | 293.396 | 295.796 | 289.396 | 293.596 | 291.896 | 0.00 | 0.00 | 0.00000000 | 0.00000000 |
2022-05-28 01:00:00 | 1 | 3.7 | 0.6 | 0.0 | 0.4 | 0.9 | 1.1 | 1.7 | 2.8 | ⋯ | 289.702 | 292.802 | 295.302 | 288.902 | 293.202 | 291.602 | 0.00 | 0.00 | 0.00000000 | 0.00000000 |
2022-05-28 02:00:00 | 2 | 3.4 | 0.5 | 0.0 | 0.4 | 1.7 | 0.9 | 1.4 | 2.2 | ⋯ | 289.317 | 292.517 | 294.917 | 288.617 | 293.017 | 291.417 | 0.00 | 0.00 | 0.00000000 | 0.00000000 |
2022-05-28 03:00:00 | 3 | 3.3 | 0.4 | 0.0 | 0.4 | 1.4 | 0.8 | 1.2 | 1.9 | ⋯ | 289.051 | 292.251 | 294.551 | 288.351 | 292.751 | 291.051 | 0.00 | 0.00 | 0.00000000 | 0.00000000 |
2022-05-28 04:00:00 | 4 | 0.0 | 0.0 | 0.0 | 0.0 | 3.4 | 0.0 | 0.0 | 0.0 | ⋯ | 288.568 | 291.968 | 293.968 | 287.868 | 292.168 | 290.568 | 0.00 | 0.00 | 0.00000000 | 0.00000000 |
2022-05-28 05:00:00 | 5 | 0.0 | 0.0 | 0.0 | 0.0 | 1.7 | 0.0 | 0.0 | 0.0 | ⋯ | 288.282 | 291.582 | 293.482 | 287.682 | 291.782 | 290.282 | 0.15 | -0.06 | -0.06000000 | 0.15000000 |
2022-05-28 06:00:00 | 6 | 0.0 | 0.0 | 0.0 | 0.0 | 1.2 | 0.0 | 0.0 | 0.3 | ⋯ | 288.366 | 291.666 | 293.866 | 287.566 | 291.766 | 290.166 | 6.99 | 0.19 | 0.19000000 | 6.99000000 |
2022-05-28 07:00:00 | 7 | 0.0 | 0.0 | 0.0 | 0.0 | 0.8 | 0.0 | 0.0 | 1.1 | ⋯ | 290.111 | 293.411 | 296.711 | 289.011 | 293.411 | 291.811 | 26.05 | 0.60 | 0.60000000 | 26.05000000 |
2022-05-28 08:00:00 | 8 | 0.0 | 0.0 | 0.0 | 0.0 | 0.7 | 0.0 | 0.1 | 1.5 | ⋯ | 291.800 | 295.300 | 298.500 | 290.900 | 295.700 | 294.200 | 35.00 | 0.00 | 0.00000000 | 35.00000000 |
2022-05-28 09:00:00 | 9 | 0.0 | 0.0 | 0.0 | 0.0 | 0.5 | 0.0 | 0.1 | 1.2 | ⋯ | 293.511 | 297.011 | 299.911 | 292.011 | 297.311 | 295.711 | 35.00 | 0.00 | 0.00000000 | 35.00000000 |
2022-05-28 10:00:00 | 10 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | ⋯ | 295.337 | 298.437 | 301.637 | 293.137 | 298.737 | 297.037 | 35.00 | 0.00 | 0.00000000 | 35.00000000 |
2022-05-28 11:00:00 | 11 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | ⋯ | 296.250 | 299.550 | 303.350 | 294.050 | 299.650 | 297.950 | 35.00 | 0.00 | 0.00000000 | 35.00000000 |
2022-05-28 12:00:00 | 12 | 0.6 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | ⋯ | 297.206 | 300.406 | 304.606 | 294.906 | 300.406 | 298.606 | 35.00 | 0.00 | 0.00000000 | 35.00000000 |
2022-05-28 13:00:00 | 13 | 1.1 | 0.3 | 0.0 | 0.4 | 0.0 | 0.0 | 0.0 | 0.3 | ⋯ | 298.100 | 301.300 | 305.500 | 295.900 | 301.200 | 299.400 | 35.00 | 0.00 | 0.00000000 | 35.00000000 |
2022-05-28 14:00:00 | 14 | 0.9 | 0.5 | 0.0 | 1.3 | 0.1 | 0.0 | 0.0 | 0.4 | ⋯ | 298.700 | 301.900 | 306.000 | 296.500 | 301.900 | 299.800 | 35.00 | 0.00 | 0.00000000 | 35.00000000 |
2022-05-28 15:00:00 | 15 | 8.9 | 3.5 | 0.0 | 1.4 | 0.1 | 0.6 | 0.0 | 0.5 | ⋯ | 297.095 | 301.495 | 306.295 | 297.095 | 302.495 | 300.095 | 32.60 | 0.12 | 0.12000000 | 32.60000000 |
2022-05-28 16:00:00 | 16 | 26.1 | 18.9 | 1.5 | 3.0 | 1.6 | 0.0 | 30.9 | 4.3 | ⋯ | 297.730 | 300.830 | 305.430 | 296.030 | 301.630 | 299.830 | 26.20 | 22.11 | 22.11000000 | 26.20000000 |
2022-05-28 17:00:00 | 17 | 13.1 | 9.6 | 0.8 | 11.7 | 5.5 | 0.0 | 28.8 | 4.1 | ⋯ | 297.632 | 300.532 | 305.132 | 295.432 | 301.832 | 298.332 | 20.97 | 18.68 | 18.68000000 | 20.97000000 |
2022-05-28 18:00:00 | 18 | 9.6 | 6.8 | 0.5 | 26.1 | 3.8 | 1.5 | 26.9 | 3.2 | ⋯ | 296.923 | 300.623 | 304.623 | 294.723 | 301.123 | 298.323 | 9.47 | 7.33 | 7.33000000 | 9.47000000 |
2022-05-28 19:00:00 | 19 | 8.4 | 5.4 | 0.5 | 29.7 | 4.0 | 2.1 | 21.5 | 3.5 | ⋯ | 296.381 | 300.281 | 303.181 | 294.581 | 300.481 | 297.381 | 1.23 | 0.16 | 0.16000000 | 1.23000000 |
2022-05-28 20:00:00 | 20 | 7.7 | 4.6 | 0.4 | 24.2 | 3.2 | 1.7 | 17.2 | 3.1 | ⋯ | 293.800 | 297.200 | 300.100 | 293.100 | 297.800 | 295.100 | 0.00 | 0.00 | 0.00000000 | 0.00000000 |
2022-05-28 21:00:00 | 21 | 6.7 | 4.0 | 0.4 | 20.2 | 3.3 | 1.4 | 14.3 | 2.7 | ⋯ | 292.728 | 295.828 | 298.828 | 291.828 | 296.028 | 294.628 | 0.00 | 0.00 | 0.00000000 | 0.00000000 |
2022-05-28 22:00:00 | 22 | 0.0 | 0.0 | 0.0 | 2.8 | 0.0 | 0.0 | 0.0 | 0.7 | ⋯ | 292.215 | 295.015 | 297.615 | 290.515 | 295.315 | 293.815 | 0.00 | 0.00 | 0.00000000 | 0.00000000 |
2022-05-28 23:00:00 | 23 | 0.9 | 0.0 | 0.0 | 1.4 | 0.0 | 0.0 | 0.0 | 0.4 | ⋯ | 291.642 | 294.442 | 297.042 | 290.042 | 295.542 | 293.542 | 0.00 | 0.00 | 0.00000000 | 0.00000000 |
2022-05-29 00:00:00 | 0 | 0.6 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | 0.1 | 0.3 | ⋯ | 291.283 | 294.383 | 296.683 | 289.983 | 295.283 | 293.183 | NA | NA | -0.23985392 | -0.23985392 |
2022-05-29 01:00:00 | 1 | 0.4 | 0.0 | 0.0 | 0.7 | 0.0 | 0.0 | 0.1 | 0.2 | ⋯ | 290.897 | 294.197 | 296.097 | 289.597 | 294.897 | 292.897 | NA | NA | -0.22361060 | -0.22361060 |
2022-05-29 02:00:00 | 2 | 0.4 | 0.0 | 0.0 | 0.6 | 0.0 | 0.0 | 0.1 | 0.2 | ⋯ | 290.411 | 293.911 | 295.611 | 289.411 | 294.311 | 292.611 | NA | NA | -0.20814707 | -0.20814707 |
2022-05-29 03:00:00 | 3 | 0.3 | 0.0 | 0.0 | 0.4 | 0.0 | 0.0 | 0.1 | 0.2 | ⋯ | 290.218 | 293.518 | 295.118 | 289.518 | 293.918 | 292.318 | NA | NA | -0.27234178 | -0.27234178 |
2022-05-29 04:00:00 | 4 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | ⋯ | 289.841 | 293.141 | 294.741 | 289.141 | 293.641 | 292.041 | NA | NA | -0.23733378 | -0.23733378 |
2022-05-29 05:00:00 | 5 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | ⋯ | 289.541 | 292.841 | 294.341 | 288.941 | 293.141 | 291.741 | NA | NA | -0.18865640 | -0.03865640 |
2022-05-29 06:00:00 | 6 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | ⋯ | 289.859 | 293.159 | 294.959 | 289.059 | 293.359 | 291.859 | NA | NA | -0.22368016 | 6.76631984 |
2022-05-29 07:00:00 | 7 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | ⋯ | 292.959 | 295.659 | 298.759 | 291.359 | 296.259 | 294.359 | NA | NA | -0.12170396 | 25.92829604 |
2022-05-29 08:00:00 | 8 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | ⋯ | 294.500 | 297.300 | 300.300 | 293.300 | 298.000 | 296.200 | NA | NA | -0.11418910 | 34.88581090 |
2022-05-29 09:00:00 | 9 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | ⋯ | 296.014 | 298.714 | 301.714 | 294.614 | 299.314 | 297.414 | NA | NA | -0.13827462 | 34.86172538 |
2022-05-29 10:00:00 | 10 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | ⋯ | 297.406 | 300.206 | 303.306 | 295.706 | 300.406 | 298.406 | NA | NA | 0.14588678 | 35.14588678 |
2022-05-29 11:00:00 | 11 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | ⋯ | 298.488 | 301.488 | 304.988 | 296.588 | 301.488 | 299.388 | NA | NA | 0.15793433 | 35.15793433 |
2022-05-29 12:00:00 | 12 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | ⋯ | 299.524 | 302.524 | 306.224 | 297.524 | 302.424 | 300.224 | NA | NA | 0.14613707 | 35.14613707 |
2022-05-29 13:00:00 | 13 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | ⋯ | 300.357 | 303.357 | 306.957 | 298.357 | 303.357 | 301.157 | NA | NA | 0.10867346 | 35.10867346 |
2022-05-29 14:00:00 | 14 | 0.0 | 0.7 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | ⋯ | 301.157 | 303.957 | 307.757 | 299.057 | 303.957 | 301.757 | NA | NA | -0.06957341 | 34.93042659 |
2022-05-29 15:00:00 | 15 | 0.0 | 0.5 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | ⋯ | 301.236 | 303.636 | 307.236 | 299.236 | 304.436 | 302.236 | NA | NA | -0.35206589 | 32.24793411 |
2022-05-29 16:00:00 | 16 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | ⋯ | 300.539 | 303.139 | 306.439 | 298.739 | 304.739 | 301.439 | NA | NA | -1.41030541 | 24.78969459 |
2022-05-29 17:00:00 | 17 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 2.2 | 0.5 | ⋯ | 299.694 | 302.494 | 305.594 | 297.094 | 303.494 | 299.994 | NA | NA | -1.09452271 | 19.87547729 |
2022-05-29 18:00:00 | 18 | 0.0 | 0.0 | 0.0 | 1.1 | 0.1 | 0.0 | 3.1 | 0.7 | ⋯ | 298.394 | 301.294 | 304.794 | 296.794 | 302.094 | 298.994 | NA | NA | -1.39384236 | 8.07615764 |
2022-05-29 19:00:00 | 19 | 0.0 | 0.0 | 0.0 | 1.6 | 0.1 | 0.0 | 2.9 | 0.5 | ⋯ | 297.702 | 299.502 | 303.702 | 296.102 | 300.802 | 297.902 | NA | NA | -1.31873902 | -0.08873902 |
2022-05-29 20:00:00 | 20 | 0.0 | 0.0 | 0.0 | 1.3 | 0.1 | 0.0 | 2.4 | 0.4 | ⋯ | 294.800 | 297.400 | 300.600 | 293.100 | 298.600 | 295.800 | NA | NA | -0.96778364 | -0.96778364 |
2022-05-29 21:00:00 | 21 | 0.0 | 0.0 | 0.0 | 1.1 | 0.0 | 0.0 | 2.0 | 0.4 | ⋯ | 293.729 | 296.529 | 299.329 | 292.029 | 297.329 | 295.229 | NA | NA | -0.69214255 | -0.69214255 |
2022-05-29 22:00:00 | 22 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | ⋯ | 293.085 | 296.385 | 298.585 | 291.585 | 296.685 | 294.785 | NA | NA | -0.06632151 | -0.06632151 |
2022-05-29 23:00:00 | 23 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | ⋯ | 292.407 | 295.707 | 297.707 | 291.207 | 296.007 | 294.107 | NA | NA | -0.07023206 | -0.07023206 |
NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | ⋯ | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | ⋯ | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
Error in eval(expr, envir, enclos): object 'results' not found Traceback:
ARIMA with all variables except temperature variables
#all variables without temp
fitted
nahead=24
reg_matrix2=cbind(MatrixA$CLOUD_LOW_LAYER_36.25_33,MatrixA$CLOUD_LOW_LAYER_36.25_33.25,MatrixA$CLOUD_LOW_LAYER_36.25_33.5,MatrixA$CLOUD_LOW_LAYER_36.5_33,MatrixA$CLOUD_LOW_LAYER_36.5_33.25,MatrixA$CLOUD_LOW_LAYER_36.5_33.5,MatrixA$CLOUD_LOW_LAYER_36.75_33,MatrixA$CLOUD_LOW_LAYER_36.75_33.25,MatrixA$CLOUD_LOW_LAYER_36.75_33.5,MatrixA$REL_HUMIDITY_36.25_33,MatrixA$REL_HUMIDITY_36.25_33.25,MatrixA$REL_HUMIDITY_36.25_33.5,MatrixA$REL_HUMIDITY_36.5_33,MatrixA$REL_HUMIDITY_36.5_33.25,MatrixA$REL_HUMIDITY_36.5_33.5,MatrixA$REL_HUMIDITY_36.75_33,MatrixA$REL_HUMIDITY_36.75_33.25,MatrixA$REL_HUMIDITY_36.75_33.5,MatrixA$DSWRF_36.25_33,MatrixA$DSWRF_36.25_33.25,MatrixA$DSWRF_36.25_33.5,MatrixA$DSWRF_36.5_33,MatrixA$DSWRF_36.5_33.25,MatrixA$DSWRF_36.5_33.5,MatrixA$DSWRF_36.75_33,MatrixA$DSWRF_36.75_33.25,MatrixA$DSWRF_36.75_33.5)
fitted_arimax2=auto.arima(MatrixA$differ,xreg=reg_matrix2,seasonal=F,trace=T,stepwise=F,approximation=F)
forecasted2=forecast(fitted_arimax2,xreg=tail(reg_matrix2,24), h=24)
forecasted2
Series: MatrixA$differ ARIMA(1,0,1) with zero mean Coefficients: ar1 ma1 0.6822 0.1712 s.e. 0.0090 0.0122 sigma^2 = 15.25: log likelihood = -31705.54 AIC=63417.08 AICc=63417.09 BIC=63439.11
ARIMA(0,0,0) with zero mean : 72677.96 ARIMA(0,0,0) with non-zero mean : 72657.74 ARIMA(0,0,1) with zero mean : 66157 ARIMA(0,0,1) with non-zero mean : 66150.72 ARIMA(0,0,2) with zero mean : 64362.02 ARIMA(0,0,2) with non-zero mean : 64361.14 ARIMA(0,0,3) with zero mean : 63710.47 ARIMA(0,0,3) with non-zero mean : 63711.32 ARIMA(0,0,4) with zero mean : 63530 ARIMA(0,0,4) with non-zero mean : 63531.34 ARIMA(0,0,5) with zero mean : 63443.58 ARIMA(0,0,5) with non-zero mean : 63445.19 ARIMA(1,0,0) with zero mean : 63542.7 ARIMA(1,0,0) with non-zero mean : 63544.54 ARIMA(1,0,1) with zero mean : 63348.02 ARIMA(1,0,1) with non-zero mean : 63350.03 ARIMA(1,0,2) with zero mean : 63349.58 ARIMA(1,0,2) with non-zero mean : 63351.59 ARIMA(1,0,3) with zero mean : 63351.58 ARIMA(1,0,3) with non-zero mean : 63353.6 ARIMA(1,0,4) with zero mean : 63351.33 ARIMA(1,0,4) with non-zero mean : 63353.32 ARIMA(2,0,0) with zero mean : 63357.34 ARIMA(2,0,0) with non-zero mean : 63359.36 ARIMA(2,0,1) with zero mean : 63349.59 ARIMA(2,0,1) with non-zero mean : 63351.59 ARIMA(2,0,2) with zero mean : Inf ARIMA(2,0,2) with non-zero mean : Inf ARIMA(2,0,3) with zero mean : 63353.16 ARIMA(2,0,3) with non-zero mean : 63355.16 ARIMA(3,0,0) with zero mean : 63349.55 ARIMA(3,0,0) with non-zero mean : 63351.54 ARIMA(3,0,1) with zero mean : 63351.59 ARIMA(3,0,1) with non-zero mean : 63353.6 ARIMA(3,0,2) with zero mean : 63353.22 ARIMA(3,0,2) with non-zero mean : 63355.23 ARIMA(4,0,0) with zero mean : 63351.56 ARIMA(4,0,0) with non-zero mean : 63353.56 ARIMA(4,0,1) with zero mean : 63352.77 ARIMA(4,0,1) with non-zero mean : 63354.78 ARIMA(5,0,0) with zero mean : 63352.44 ARIMA(5,0,0) with non-zero mean : 63354.43 Best model: Regression with ARIMA(1,0,1) errors
Point Forecast Lo 80 Hi 80 Lo 95 Hi 95 11449 0.039614943 -7.514384 7.593614 -11.51323 11.59246 11450 0.014967161 -7.539032 7.568966 -11.53788 11.56781 11451 -0.004232844 -7.558232 7.549766 -11.55708 11.54861 11452 -0.034728588 -7.588728 7.519270 -11.58757 11.51812 11453 -0.028218354 -7.582217 7.525781 -11.58106 11.52463 11454 -0.015122822 -7.569122 7.538876 -11.56797 11.53772 11455 0.006461136 -7.547538 7.560460 -11.54638 11.55931 11456 0.177552236 -7.376447 7.731551 -11.37529 11.73040 11457 0.166708669 -7.387290 7.720708 -11.38614 11.71955 11458 0.179643053 -7.374356 7.733642 -11.37320 11.73249 11459 0.403426324 -7.150573 7.957425 -11.14942 11.95627 11460 0.430650144 -7.123349 7.984649 -11.12219 11.98349 11461 0.456701014 -7.097298 8.010700 -11.09614 12.00955 11462 0.468783006 -7.085216 8.022782 -11.08406 12.02163 11463 0.421002362 -7.132997 7.975001 -11.13184 11.97385 11464 0.202609089 -7.351390 7.756608 -11.35024 11.75545 11465 -0.910363105 -8.464362 6.643636 -12.46321 10.64248 11466 -0.682742338 -8.236741 6.871257 -12.23559 10.87010 11467 -1.015126358 -8.569125 6.538873 -12.56797 10.53772 11468 -0.884912065 -8.438911 6.669087 -12.43776 10.66793 11469 -0.657528361 -8.211527 6.896471 -12.21037 10.89532 11470 -0.425481998 -7.979481 7.128517 -11.97833 11.12736 11471 0.219964978 -7.334034 7.773964 -11.33288 11.77281 11472 0.226407418 -7.327592 7.780406 -11.32644 11.77925
temporary2=copy(MatrixA)
temporary2[,predicted_differ:=differ]
test2=MatrixA[11425:11448]
test2[,production:=NA]
test2[,predicted_differ:=as.numeric(forecasted2$mean)]
temporary2[11425:11448]=test2
temporary2[,forecastval:=predicted_differ+shift(production,24)]
temporary2[11400:11450,]
date | hour | CLOUD_LOW_LAYER_36.25_33 | CLOUD_LOW_LAYER_36.25_33.25 | CLOUD_LOW_LAYER_36.25_33.5 | CLOUD_LOW_LAYER_36.5_33 | CLOUD_LOW_LAYER_36.5_33.25 | CLOUD_LOW_LAYER_36.5_33.5 | CLOUD_LOW_LAYER_36.75_33 | CLOUD_LOW_LAYER_36.75_33.25 | ⋯ | TEMP_36.5_33 | TEMP_36.5_33.25 | TEMP_36.5_33.5 | TEMP_36.75_33 | TEMP_36.75_33.25 | TEMP_36.75_33.5 | production | differ | predicted_differ | forecastval |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
<dttm> | <int> | <dbl> | <dbl> | <dbl> | <dbl> | <dbl> | <dbl> | <dbl> | <dbl> | ⋯ | <dbl> | <dbl> | <dbl> | <dbl> | <dbl> | <dbl> | <dbl> | <dbl> | <dbl> | <dbl> |
2022-05-27 23:00:00 | 23 | 3.6 | 0.3 | 0.0 | 0.0 | 1.8 | 2.3 | 3.4 | 4.1 | ⋯ | 290.951 | 293.551 | 296.651 | 289.651 | 294.351 | 292.751 | 0.00 | 0.00 | 0.000000000 | 0.000000000 |
2022-05-28 00:00:00 | 0 | 4.0 | 0.3 | 0.0 | 0.6 | 1.2 | 1.6 | 2.2 | 3.7 | ⋯ | 290.396 | 293.396 | 295.796 | 289.396 | 293.596 | 291.896 | 0.00 | 0.00 | 0.000000000 | 0.000000000 |
2022-05-28 01:00:00 | 1 | 3.7 | 0.6 | 0.0 | 0.4 | 0.9 | 1.1 | 1.7 | 2.8 | ⋯ | 289.702 | 292.802 | 295.302 | 288.902 | 293.202 | 291.602 | 0.00 | 0.00 | 0.000000000 | 0.000000000 |
2022-05-28 02:00:00 | 2 | 3.4 | 0.5 | 0.0 | 0.4 | 1.7 | 0.9 | 1.4 | 2.2 | ⋯ | 289.317 | 292.517 | 294.917 | 288.617 | 293.017 | 291.417 | 0.00 | 0.00 | 0.000000000 | 0.000000000 |
2022-05-28 03:00:00 | 3 | 3.3 | 0.4 | 0.0 | 0.4 | 1.4 | 0.8 | 1.2 | 1.9 | ⋯ | 289.051 | 292.251 | 294.551 | 288.351 | 292.751 | 291.051 | 0.00 | 0.00 | 0.000000000 | 0.000000000 |
2022-05-28 04:00:00 | 4 | 0.0 | 0.0 | 0.0 | 0.0 | 3.4 | 0.0 | 0.0 | 0.0 | ⋯ | 288.568 | 291.968 | 293.968 | 287.868 | 292.168 | 290.568 | 0.00 | 0.00 | 0.000000000 | 0.000000000 |
2022-05-28 05:00:00 | 5 | 0.0 | 0.0 | 0.0 | 0.0 | 1.7 | 0.0 | 0.0 | 0.0 | ⋯ | 288.282 | 291.582 | 293.482 | 287.682 | 291.782 | 290.282 | 0.15 | -0.06 | -0.060000000 | 0.150000000 |
2022-05-28 06:00:00 | 6 | 0.0 | 0.0 | 0.0 | 0.0 | 1.2 | 0.0 | 0.0 | 0.3 | ⋯ | 288.366 | 291.666 | 293.866 | 287.566 | 291.766 | 290.166 | 6.99 | 0.19 | 0.190000000 | 6.990000000 |
2022-05-28 07:00:00 | 7 | 0.0 | 0.0 | 0.0 | 0.0 | 0.8 | 0.0 | 0.0 | 1.1 | ⋯ | 290.111 | 293.411 | 296.711 | 289.011 | 293.411 | 291.811 | 26.05 | 0.60 | 0.600000000 | 26.050000000 |
2022-05-28 08:00:00 | 8 | 0.0 | 0.0 | 0.0 | 0.0 | 0.7 | 0.0 | 0.1 | 1.5 | ⋯ | 291.800 | 295.300 | 298.500 | 290.900 | 295.700 | 294.200 | 35.00 | 0.00 | 0.000000000 | 35.000000000 |
2022-05-28 09:00:00 | 9 | 0.0 | 0.0 | 0.0 | 0.0 | 0.5 | 0.0 | 0.1 | 1.2 | ⋯ | 293.511 | 297.011 | 299.911 | 292.011 | 297.311 | 295.711 | 35.00 | 0.00 | 0.000000000 | 35.000000000 |
2022-05-28 10:00:00 | 10 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | ⋯ | 295.337 | 298.437 | 301.637 | 293.137 | 298.737 | 297.037 | 35.00 | 0.00 | 0.000000000 | 35.000000000 |
2022-05-28 11:00:00 | 11 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | ⋯ | 296.250 | 299.550 | 303.350 | 294.050 | 299.650 | 297.950 | 35.00 | 0.00 | 0.000000000 | 35.000000000 |
2022-05-28 12:00:00 | 12 | 0.6 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | ⋯ | 297.206 | 300.406 | 304.606 | 294.906 | 300.406 | 298.606 | 35.00 | 0.00 | 0.000000000 | 35.000000000 |
2022-05-28 13:00:00 | 13 | 1.1 | 0.3 | 0.0 | 0.4 | 0.0 | 0.0 | 0.0 | 0.3 | ⋯ | 298.100 | 301.300 | 305.500 | 295.900 | 301.200 | 299.400 | 35.00 | 0.00 | 0.000000000 | 35.000000000 |
2022-05-28 14:00:00 | 14 | 0.9 | 0.5 | 0.0 | 1.3 | 0.1 | 0.0 | 0.0 | 0.4 | ⋯ | 298.700 | 301.900 | 306.000 | 296.500 | 301.900 | 299.800 | 35.00 | 0.00 | 0.000000000 | 35.000000000 |
2022-05-28 15:00:00 | 15 | 8.9 | 3.5 | 0.0 | 1.4 | 0.1 | 0.6 | 0.0 | 0.5 | ⋯ | 297.095 | 301.495 | 306.295 | 297.095 | 302.495 | 300.095 | 32.60 | 0.12 | 0.120000000 | 32.600000000 |
2022-05-28 16:00:00 | 16 | 26.1 | 18.9 | 1.5 | 3.0 | 1.6 | 0.0 | 30.9 | 4.3 | ⋯ | 297.730 | 300.830 | 305.430 | 296.030 | 301.630 | 299.830 | 26.20 | 22.11 | 22.110000000 | 26.200000000 |
2022-05-28 17:00:00 | 17 | 13.1 | 9.6 | 0.8 | 11.7 | 5.5 | 0.0 | 28.8 | 4.1 | ⋯ | 297.632 | 300.532 | 305.132 | 295.432 | 301.832 | 298.332 | 20.97 | 18.68 | 18.680000000 | 20.970000000 |
2022-05-28 18:00:00 | 18 | 9.6 | 6.8 | 0.5 | 26.1 | 3.8 | 1.5 | 26.9 | 3.2 | ⋯ | 296.923 | 300.623 | 304.623 | 294.723 | 301.123 | 298.323 | 9.47 | 7.33 | 7.330000000 | 9.470000000 |
2022-05-28 19:00:00 | 19 | 8.4 | 5.4 | 0.5 | 29.7 | 4.0 | 2.1 | 21.5 | 3.5 | ⋯ | 296.381 | 300.281 | 303.181 | 294.581 | 300.481 | 297.381 | 1.23 | 0.16 | 0.160000000 | 1.230000000 |
2022-05-28 20:00:00 | 20 | 7.7 | 4.6 | 0.4 | 24.2 | 3.2 | 1.7 | 17.2 | 3.1 | ⋯ | 293.800 | 297.200 | 300.100 | 293.100 | 297.800 | 295.100 | 0.00 | 0.00 | 0.000000000 | 0.000000000 |
2022-05-28 21:00:00 | 21 | 6.7 | 4.0 | 0.4 | 20.2 | 3.3 | 1.4 | 14.3 | 2.7 | ⋯ | 292.728 | 295.828 | 298.828 | 291.828 | 296.028 | 294.628 | 0.00 | 0.00 | 0.000000000 | 0.000000000 |
2022-05-28 22:00:00 | 22 | 0.0 | 0.0 | 0.0 | 2.8 | 0.0 | 0.0 | 0.0 | 0.7 | ⋯ | 292.215 | 295.015 | 297.615 | 290.515 | 295.315 | 293.815 | 0.00 | 0.00 | 0.000000000 | 0.000000000 |
2022-05-28 23:00:00 | 23 | 0.9 | 0.0 | 0.0 | 1.4 | 0.0 | 0.0 | 0.0 | 0.4 | ⋯ | 291.642 | 294.442 | 297.042 | 290.042 | 295.542 | 293.542 | 0.00 | 0.00 | 0.000000000 | 0.000000000 |
2022-05-29 00:00:00 | 0 | 0.6 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | 0.1 | 0.3 | ⋯ | 291.283 | 294.383 | 296.683 | 289.983 | 295.283 | 293.183 | NA | NA | 0.039614943 | 0.039614943 |
2022-05-29 01:00:00 | 1 | 0.4 | 0.0 | 0.0 | 0.7 | 0.0 | 0.0 | 0.1 | 0.2 | ⋯ | 290.897 | 294.197 | 296.097 | 289.597 | 294.897 | 292.897 | NA | NA | 0.014967161 | 0.014967161 |
2022-05-29 02:00:00 | 2 | 0.4 | 0.0 | 0.0 | 0.6 | 0.0 | 0.0 | 0.1 | 0.2 | ⋯ | 290.411 | 293.911 | 295.611 | 289.411 | 294.311 | 292.611 | NA | NA | -0.004232844 | -0.004232844 |
2022-05-29 03:00:00 | 3 | 0.3 | 0.0 | 0.0 | 0.4 | 0.0 | 0.0 | 0.1 | 0.2 | ⋯ | 290.218 | 293.518 | 295.118 | 289.518 | 293.918 | 292.318 | NA | NA | -0.034728588 | -0.034728588 |
2022-05-29 04:00:00 | 4 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | ⋯ | 289.841 | 293.141 | 294.741 | 289.141 | 293.641 | 292.041 | NA | NA | -0.028218354 | -0.028218354 |
2022-05-29 05:00:00 | 5 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | ⋯ | 289.541 | 292.841 | 294.341 | 288.941 | 293.141 | 291.741 | NA | NA | -0.015122822 | 0.134877178 |
2022-05-29 06:00:00 | 6 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | ⋯ | 289.859 | 293.159 | 294.959 | 289.059 | 293.359 | 291.859 | NA | NA | 0.006461136 | 6.996461136 |
2022-05-29 07:00:00 | 7 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | ⋯ | 292.959 | 295.659 | 298.759 | 291.359 | 296.259 | 294.359 | NA | NA | 0.177552236 | 26.227552236 |
2022-05-29 08:00:00 | 8 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | ⋯ | 294.500 | 297.300 | 300.300 | 293.300 | 298.000 | 296.200 | NA | NA | 0.166708669 | 35.166708669 |
2022-05-29 09:00:00 | 9 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | ⋯ | 296.014 | 298.714 | 301.714 | 294.614 | 299.314 | 297.414 | NA | NA | 0.179643053 | 35.179643053 |
2022-05-29 10:00:00 | 10 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | ⋯ | 297.406 | 300.206 | 303.306 | 295.706 | 300.406 | 298.406 | NA | NA | 0.403426324 | 35.403426324 |
2022-05-29 11:00:00 | 11 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | ⋯ | 298.488 | 301.488 | 304.988 | 296.588 | 301.488 | 299.388 | NA | NA | 0.430650144 | 35.430650144 |
2022-05-29 12:00:00 | 12 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | ⋯ | 299.524 | 302.524 | 306.224 | 297.524 | 302.424 | 300.224 | NA | NA | 0.456701014 | 35.456701014 |
2022-05-29 13:00:00 | 13 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | ⋯ | 300.357 | 303.357 | 306.957 | 298.357 | 303.357 | 301.157 | NA | NA | 0.468783006 | 35.468783006 |
2022-05-29 14:00:00 | 14 | 0.0 | 0.7 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | ⋯ | 301.157 | 303.957 | 307.757 | 299.057 | 303.957 | 301.757 | NA | NA | 0.421002362 | 35.421002362 |
2022-05-29 15:00:00 | 15 | 0.0 | 0.5 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | ⋯ | 301.236 | 303.636 | 307.236 | 299.236 | 304.436 | 302.236 | NA | NA | 0.202609089 | 32.802609089 |
2022-05-29 16:00:00 | 16 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | ⋯ | 300.539 | 303.139 | 306.439 | 298.739 | 304.739 | 301.439 | NA | NA | -0.910363105 | 25.289636895 |
2022-05-29 17:00:00 | 17 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 2.2 | 0.5 | ⋯ | 299.694 | 302.494 | 305.594 | 297.094 | 303.494 | 299.994 | NA | NA | -0.682742338 | 20.287257662 |
2022-05-29 18:00:00 | 18 | 0.0 | 0.0 | 0.0 | 1.1 | 0.1 | 0.0 | 3.1 | 0.7 | ⋯ | 298.394 | 301.294 | 304.794 | 296.794 | 302.094 | 298.994 | NA | NA | -1.015126358 | 8.454873642 |
2022-05-29 19:00:00 | 19 | 0.0 | 0.0 | 0.0 | 1.6 | 0.1 | 0.0 | 2.9 | 0.5 | ⋯ | 297.702 | 299.502 | 303.702 | 296.102 | 300.802 | 297.902 | NA | NA | -0.884912065 | 0.345087935 |
2022-05-29 20:00:00 | 20 | 0.0 | 0.0 | 0.0 | 1.3 | 0.1 | 0.0 | 2.4 | 0.4 | ⋯ | 294.800 | 297.400 | 300.600 | 293.100 | 298.600 | 295.800 | NA | NA | -0.657528361 | -0.657528361 |
2022-05-29 21:00:00 | 21 | 0.0 | 0.0 | 0.0 | 1.1 | 0.0 | 0.0 | 2.0 | 0.4 | ⋯ | 293.729 | 296.529 | 299.329 | 292.029 | 297.329 | 295.229 | NA | NA | -0.425481998 | -0.425481998 |
2022-05-29 22:00:00 | 22 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | ⋯ | 293.085 | 296.385 | 298.585 | 291.585 | 296.685 | 294.785 | NA | NA | 0.219964978 | 0.219964978 |
2022-05-29 23:00:00 | 23 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | ⋯ | 292.407 | 295.707 | 297.707 | 291.207 | 296.007 | 294.107 | NA | NA | 0.226407418 | 0.226407418 |
NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | ⋯ | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | ⋯ | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
ARIMA with all DSWRF variables and some REL_HUMIDITY variables
#ARIMA with some variables
fitted
nahead=24
reg_matrix3=cbind(MatrixA$REL_HUMIDITY_36.25_33.25,MatrixA$REL_HUMIDITY_36.25_33.5,MatrixA$REL_HUMIDITY_36.5_33.25,MatrixA$REL_HUMIDITY_36.75_33.5,MatrixA$DSWRF_36.25_33,MatrixA$DSWRF_36.25_33.25,MatrixA$DSWRF_36.25_33.5,MatrixA$DSWRF_36.5_33,MatrixA$DSWRF_36.5_33.25,MatrixA$DSWRF_36.5_33.5,MatrixA$DSWRF_36.75_33,MatrixA$DSWRF_36.75_33.25,MatrixA$DSWRF_36.75_33.5)
fitted_arimax3=auto.arima(MatrixA$differ,xreg=reg_matrix3,seasonal=F,trace=T,stepwise=F,approximation=F)
forecasted3=forecast(fitted_arimax3,xreg=tail(reg_matrix3,24), h=24)
forecasted3
Series: MatrixA$differ ARIMA(1,0,1) with zero mean Coefficients: ar1 ma1 0.6822 0.1712 s.e. 0.0090 0.0122 sigma^2 = 15.25: log likelihood = -31705.54 AIC=63417.08 AICc=63417.09 BIC=63439.11
ARIMA(0,0,0) with zero mean : 73005.56 ARIMA(0,0,0) with non-zero mean : 73000.37 ARIMA(0,0,1) with zero mean : 66357.07 ARIMA(0,0,1) with non-zero mean : 66351.06 ARIMA(0,0,2) with zero mean : 64491.03 ARIMA(0,0,2) with non-zero mean : 64485.17 ARIMA(0,0,3) with zero mean : 63806.74 ARIMA(0,0,3) with non-zero mean : 63801.58 ARIMA(0,0,4) with zero mean : 63608.24 ARIMA(0,0,4) with non-zero mean : 63603.97 ARIMA(0,0,5) with zero mean : 63515.11 ARIMA(0,0,5) with non-zero mean : 63511.56 ARIMA(1,0,0) with zero mean : 63581.13 ARIMA(1,0,0) with non-zero mean : 63578.47 ARIMA(1,0,1) with zero mean : 63395.86 ARIMA(1,0,1) with non-zero mean : 63392.77 ARIMA(1,0,2) with zero mean : 63396.5 ARIMA(1,0,2) with non-zero mean : 63393.44 ARIMA(1,0,3) with zero mean : 63398.14 ARIMA(1,0,3) with non-zero mean : 63395.09 ARIMA(1,0,4) with zero mean : 63397.5 ARIMA(1,0,4) with non-zero mean : 63394.37 ARIMA(2,0,0) with zero mean : 63406.88 ARIMA(2,0,0) with non-zero mean : 63403.76 ARIMA(2,0,1) with zero mean : 63396.59 ARIMA(2,0,1) with non-zero mean : 63393.57 ARIMA(2,0,2) with zero mean : 63398.55 ARIMA(2,0,2) with non-zero mean : 63395.52 ARIMA(2,0,3) with zero mean : Inf ARIMA(2,0,3) with non-zero mean : Inf ARIMA(3,0,0) with zero mean : 63395.86 ARIMA(3,0,0) with non-zero mean : 63392.8 ARIMA(3,0,1) with zero mean : 63397.63 ARIMA(3,0,1) with non-zero mean : 63394.64 ARIMA(3,0,2) with zero mean : Inf ARIMA(3,0,2) with non-zero mean : Inf ARIMA(4,0,0) with zero mean : 63397.72 ARIMA(4,0,0) with non-zero mean : 63394.64 ARIMA(4,0,1) with zero mean : 63399.55 ARIMA(4,0,1) with non-zero mean : 63396.5 ARIMA(5,0,0) with zero mean : 63398.19 ARIMA(5,0,0) with non-zero mean : 63395.05 Best model: Regression with ARIMA(1,0,1) errors
Point Forecast Lo 80 Hi 80 Lo 95 Hi 95 11449 0.15388243 -7.490197 7.797962 -11.53673 11.84449 11450 0.18072046 -7.463359 7.824800 -11.50989 11.87133 11451 0.19519414 -7.448885 7.839273 -11.49542 11.88580 11452 0.16281373 -7.481266 7.806893 -11.52780 11.85342 11453 0.08910545 -7.554974 7.733185 -11.60150 11.77972 11454 0.08674720 -7.557332 7.730826 -11.60386 11.77736 11455 0.05812610 -7.585953 7.702205 -11.63248 11.74874 11456 0.18325337 -7.460826 7.827333 -11.50736 11.87386 11457 0.31703899 -7.327040 7.961118 -11.37357 12.00765 11458 0.38038822 -7.263691 8.024467 -11.31022 12.07100 11459 0.57001518 -7.074064 8.214094 -11.12060 12.26063 11460 0.57397535 -7.070104 8.218055 -11.11664 12.26459 11461 0.56632777 -7.077751 8.210407 -11.12428 12.25694 11462 0.62055098 -7.023528 8.264630 -11.07006 12.31116 11463 0.62396133 -7.020118 8.268041 -11.06665 12.31457 11464 0.54723105 -7.096848 8.191310 -11.14338 12.23784 11465 -0.14265297 -7.786732 7.501426 -11.83326 11.54796 11466 0.09047757 -7.553602 7.734557 -11.60013 11.78109 11467 -0.27303186 -7.917111 7.371047 -11.96364 11.41758 11468 -0.46060764 -8.104687 7.183472 -12.15122 11.23000 11469 -0.57332944 -8.217409 7.070750 -12.26394 11.11728 11470 -0.43385866 -8.077938 7.210221 -12.12447 11.25675 11471 0.07357205 -7.570507 7.717651 -11.61704 11.76418 11472 0.12873935 -7.515340 7.772819 -11.56187 11.81935
temporary3=copy(MatrixA)
temporary3[,predicted_differ:=differ]
test3=MatrixA[11425:11448]
test3[,production:=NA]
test3[,predicted_differ:=as.numeric(forecasted3$mean)]
temporary3[11425:11448]=test3
temporary3[,forecastval:=predicted_differ+shift(production,24)]
temporary3[11400:11450,]
date | hour | CLOUD_LOW_LAYER_36.25_33 | CLOUD_LOW_LAYER_36.25_33.25 | CLOUD_LOW_LAYER_36.25_33.5 | CLOUD_LOW_LAYER_36.5_33 | CLOUD_LOW_LAYER_36.5_33.25 | CLOUD_LOW_LAYER_36.5_33.5 | CLOUD_LOW_LAYER_36.75_33 | CLOUD_LOW_LAYER_36.75_33.25 | ⋯ | TEMP_36.5_33 | TEMP_36.5_33.25 | TEMP_36.5_33.5 | TEMP_36.75_33 | TEMP_36.75_33.25 | TEMP_36.75_33.5 | production | differ | predicted_differ | forecastval |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
<dttm> | <int> | <dbl> | <dbl> | <dbl> | <dbl> | <dbl> | <dbl> | <dbl> | <dbl> | ⋯ | <dbl> | <dbl> | <dbl> | <dbl> | <dbl> | <dbl> | <dbl> | <dbl> | <dbl> | <dbl> |
2022-05-27 23:00:00 | 23 | 3.6 | 0.3 | 0.0 | 0.0 | 1.8 | 2.3 | 3.4 | 4.1 | ⋯ | 290.951 | 293.551 | 296.651 | 289.651 | 294.351 | 292.751 | 0.00 | 0.00 | 0.00000000 | 0.00000000 |
2022-05-28 00:00:00 | 0 | 4.0 | 0.3 | 0.0 | 0.6 | 1.2 | 1.6 | 2.2 | 3.7 | ⋯ | 290.396 | 293.396 | 295.796 | 289.396 | 293.596 | 291.896 | 0.00 | 0.00 | 0.00000000 | 0.00000000 |
2022-05-28 01:00:00 | 1 | 3.7 | 0.6 | 0.0 | 0.4 | 0.9 | 1.1 | 1.7 | 2.8 | ⋯ | 289.702 | 292.802 | 295.302 | 288.902 | 293.202 | 291.602 | 0.00 | 0.00 | 0.00000000 | 0.00000000 |
2022-05-28 02:00:00 | 2 | 3.4 | 0.5 | 0.0 | 0.4 | 1.7 | 0.9 | 1.4 | 2.2 | ⋯ | 289.317 | 292.517 | 294.917 | 288.617 | 293.017 | 291.417 | 0.00 | 0.00 | 0.00000000 | 0.00000000 |
2022-05-28 03:00:00 | 3 | 3.3 | 0.4 | 0.0 | 0.4 | 1.4 | 0.8 | 1.2 | 1.9 | ⋯ | 289.051 | 292.251 | 294.551 | 288.351 | 292.751 | 291.051 | 0.00 | 0.00 | 0.00000000 | 0.00000000 |
2022-05-28 04:00:00 | 4 | 0.0 | 0.0 | 0.0 | 0.0 | 3.4 | 0.0 | 0.0 | 0.0 | ⋯ | 288.568 | 291.968 | 293.968 | 287.868 | 292.168 | 290.568 | 0.00 | 0.00 | 0.00000000 | 0.00000000 |
2022-05-28 05:00:00 | 5 | 0.0 | 0.0 | 0.0 | 0.0 | 1.7 | 0.0 | 0.0 | 0.0 | ⋯ | 288.282 | 291.582 | 293.482 | 287.682 | 291.782 | 290.282 | 0.15 | -0.06 | -0.06000000 | 0.15000000 |
2022-05-28 06:00:00 | 6 | 0.0 | 0.0 | 0.0 | 0.0 | 1.2 | 0.0 | 0.0 | 0.3 | ⋯ | 288.366 | 291.666 | 293.866 | 287.566 | 291.766 | 290.166 | 6.99 | 0.19 | 0.19000000 | 6.99000000 |
2022-05-28 07:00:00 | 7 | 0.0 | 0.0 | 0.0 | 0.0 | 0.8 | 0.0 | 0.0 | 1.1 | ⋯ | 290.111 | 293.411 | 296.711 | 289.011 | 293.411 | 291.811 | 26.05 | 0.60 | 0.60000000 | 26.05000000 |
2022-05-28 08:00:00 | 8 | 0.0 | 0.0 | 0.0 | 0.0 | 0.7 | 0.0 | 0.1 | 1.5 | ⋯ | 291.800 | 295.300 | 298.500 | 290.900 | 295.700 | 294.200 | 35.00 | 0.00 | 0.00000000 | 35.00000000 |
2022-05-28 09:00:00 | 9 | 0.0 | 0.0 | 0.0 | 0.0 | 0.5 | 0.0 | 0.1 | 1.2 | ⋯ | 293.511 | 297.011 | 299.911 | 292.011 | 297.311 | 295.711 | 35.00 | 0.00 | 0.00000000 | 35.00000000 |
2022-05-28 10:00:00 | 10 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | ⋯ | 295.337 | 298.437 | 301.637 | 293.137 | 298.737 | 297.037 | 35.00 | 0.00 | 0.00000000 | 35.00000000 |
2022-05-28 11:00:00 | 11 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | ⋯ | 296.250 | 299.550 | 303.350 | 294.050 | 299.650 | 297.950 | 35.00 | 0.00 | 0.00000000 | 35.00000000 |
2022-05-28 12:00:00 | 12 | 0.6 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | ⋯ | 297.206 | 300.406 | 304.606 | 294.906 | 300.406 | 298.606 | 35.00 | 0.00 | 0.00000000 | 35.00000000 |
2022-05-28 13:00:00 | 13 | 1.1 | 0.3 | 0.0 | 0.4 | 0.0 | 0.0 | 0.0 | 0.3 | ⋯ | 298.100 | 301.300 | 305.500 | 295.900 | 301.200 | 299.400 | 35.00 | 0.00 | 0.00000000 | 35.00000000 |
2022-05-28 14:00:00 | 14 | 0.9 | 0.5 | 0.0 | 1.3 | 0.1 | 0.0 | 0.0 | 0.4 | ⋯ | 298.700 | 301.900 | 306.000 | 296.500 | 301.900 | 299.800 | 35.00 | 0.00 | 0.00000000 | 35.00000000 |
2022-05-28 15:00:00 | 15 | 8.9 | 3.5 | 0.0 | 1.4 | 0.1 | 0.6 | 0.0 | 0.5 | ⋯ | 297.095 | 301.495 | 306.295 | 297.095 | 302.495 | 300.095 | 32.60 | 0.12 | 0.12000000 | 32.60000000 |
2022-05-28 16:00:00 | 16 | 26.1 | 18.9 | 1.5 | 3.0 | 1.6 | 0.0 | 30.9 | 4.3 | ⋯ | 297.730 | 300.830 | 305.430 | 296.030 | 301.630 | 299.830 | 26.20 | 22.11 | 22.11000000 | 26.20000000 |
2022-05-28 17:00:00 | 17 | 13.1 | 9.6 | 0.8 | 11.7 | 5.5 | 0.0 | 28.8 | 4.1 | ⋯ | 297.632 | 300.532 | 305.132 | 295.432 | 301.832 | 298.332 | 20.97 | 18.68 | 18.68000000 | 20.97000000 |
2022-05-28 18:00:00 | 18 | 9.6 | 6.8 | 0.5 | 26.1 | 3.8 | 1.5 | 26.9 | 3.2 | ⋯ | 296.923 | 300.623 | 304.623 | 294.723 | 301.123 | 298.323 | 9.47 | 7.33 | 7.33000000 | 9.47000000 |
2022-05-28 19:00:00 | 19 | 8.4 | 5.4 | 0.5 | 29.7 | 4.0 | 2.1 | 21.5 | 3.5 | ⋯ | 296.381 | 300.281 | 303.181 | 294.581 | 300.481 | 297.381 | 1.23 | 0.16 | 0.16000000 | 1.23000000 |
2022-05-28 20:00:00 | 20 | 7.7 | 4.6 | 0.4 | 24.2 | 3.2 | 1.7 | 17.2 | 3.1 | ⋯ | 293.800 | 297.200 | 300.100 | 293.100 | 297.800 | 295.100 | 0.00 | 0.00 | 0.00000000 | 0.00000000 |
2022-05-28 21:00:00 | 21 | 6.7 | 4.0 | 0.4 | 20.2 | 3.3 | 1.4 | 14.3 | 2.7 | ⋯ | 292.728 | 295.828 | 298.828 | 291.828 | 296.028 | 294.628 | 0.00 | 0.00 | 0.00000000 | 0.00000000 |
2022-05-28 22:00:00 | 22 | 0.0 | 0.0 | 0.0 | 2.8 | 0.0 | 0.0 | 0.0 | 0.7 | ⋯ | 292.215 | 295.015 | 297.615 | 290.515 | 295.315 | 293.815 | 0.00 | 0.00 | 0.00000000 | 0.00000000 |
2022-05-28 23:00:00 | 23 | 0.9 | 0.0 | 0.0 | 1.4 | 0.0 | 0.0 | 0.0 | 0.4 | ⋯ | 291.642 | 294.442 | 297.042 | 290.042 | 295.542 | 293.542 | 0.00 | 0.00 | 0.00000000 | 0.00000000 |
2022-05-29 00:00:00 | 0 | 0.6 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | 0.1 | 0.3 | ⋯ | 291.283 | 294.383 | 296.683 | 289.983 | 295.283 | 293.183 | NA | NA | 0.15388243 | 0.15388243 |
2022-05-29 01:00:00 | 1 | 0.4 | 0.0 | 0.0 | 0.7 | 0.0 | 0.0 | 0.1 | 0.2 | ⋯ | 290.897 | 294.197 | 296.097 | 289.597 | 294.897 | 292.897 | NA | NA | 0.18072046 | 0.18072046 |
2022-05-29 02:00:00 | 2 | 0.4 | 0.0 | 0.0 | 0.6 | 0.0 | 0.0 | 0.1 | 0.2 | ⋯ | 290.411 | 293.911 | 295.611 | 289.411 | 294.311 | 292.611 | NA | NA | 0.19519414 | 0.19519414 |
2022-05-29 03:00:00 | 3 | 0.3 | 0.0 | 0.0 | 0.4 | 0.0 | 0.0 | 0.1 | 0.2 | ⋯ | 290.218 | 293.518 | 295.118 | 289.518 | 293.918 | 292.318 | NA | NA | 0.16281373 | 0.16281373 |
2022-05-29 04:00:00 | 4 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | ⋯ | 289.841 | 293.141 | 294.741 | 289.141 | 293.641 | 292.041 | NA | NA | 0.08910545 | 0.08910545 |
2022-05-29 05:00:00 | 5 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | ⋯ | 289.541 | 292.841 | 294.341 | 288.941 | 293.141 | 291.741 | NA | NA | 0.08674720 | 0.23674720 |
2022-05-29 06:00:00 | 6 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | ⋯ | 289.859 | 293.159 | 294.959 | 289.059 | 293.359 | 291.859 | NA | NA | 0.05812610 | 7.04812610 |
2022-05-29 07:00:00 | 7 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | ⋯ | 292.959 | 295.659 | 298.759 | 291.359 | 296.259 | 294.359 | NA | NA | 0.18325337 | 26.23325337 |
2022-05-29 08:00:00 | 8 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | ⋯ | 294.500 | 297.300 | 300.300 | 293.300 | 298.000 | 296.200 | NA | NA | 0.31703899 | 35.31703899 |
2022-05-29 09:00:00 | 9 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | ⋯ | 296.014 | 298.714 | 301.714 | 294.614 | 299.314 | 297.414 | NA | NA | 0.38038822 | 35.38038822 |
2022-05-29 10:00:00 | 10 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | ⋯ | 297.406 | 300.206 | 303.306 | 295.706 | 300.406 | 298.406 | NA | NA | 0.57001518 | 35.57001518 |
2022-05-29 11:00:00 | 11 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | ⋯ | 298.488 | 301.488 | 304.988 | 296.588 | 301.488 | 299.388 | NA | NA | 0.57397535 | 35.57397535 |
2022-05-29 12:00:00 | 12 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | ⋯ | 299.524 | 302.524 | 306.224 | 297.524 | 302.424 | 300.224 | NA | NA | 0.56632777 | 35.56632777 |
2022-05-29 13:00:00 | 13 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | ⋯ | 300.357 | 303.357 | 306.957 | 298.357 | 303.357 | 301.157 | NA | NA | 0.62055098 | 35.62055098 |
2022-05-29 14:00:00 | 14 | 0.0 | 0.7 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | ⋯ | 301.157 | 303.957 | 307.757 | 299.057 | 303.957 | 301.757 | NA | NA | 0.62396133 | 35.62396133 |
2022-05-29 15:00:00 | 15 | 0.0 | 0.5 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | ⋯ | 301.236 | 303.636 | 307.236 | 299.236 | 304.436 | 302.236 | NA | NA | 0.54723105 | 33.14723105 |
2022-05-29 16:00:00 | 16 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | ⋯ | 300.539 | 303.139 | 306.439 | 298.739 | 304.739 | 301.439 | NA | NA | -0.14265297 | 26.05734703 |
2022-05-29 17:00:00 | 17 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 2.2 | 0.5 | ⋯ | 299.694 | 302.494 | 305.594 | 297.094 | 303.494 | 299.994 | NA | NA | 0.09047757 | 21.06047757 |
2022-05-29 18:00:00 | 18 | 0.0 | 0.0 | 0.0 | 1.1 | 0.1 | 0.0 | 3.1 | 0.7 | ⋯ | 298.394 | 301.294 | 304.794 | 296.794 | 302.094 | 298.994 | NA | NA | -0.27303186 | 9.19696814 |
2022-05-29 19:00:00 | 19 | 0.0 | 0.0 | 0.0 | 1.6 | 0.1 | 0.0 | 2.9 | 0.5 | ⋯ | 297.702 | 299.502 | 303.702 | 296.102 | 300.802 | 297.902 | NA | NA | -0.46060764 | 0.76939236 |
2022-05-29 20:00:00 | 20 | 0.0 | 0.0 | 0.0 | 1.3 | 0.1 | 0.0 | 2.4 | 0.4 | ⋯ | 294.800 | 297.400 | 300.600 | 293.100 | 298.600 | 295.800 | NA | NA | -0.57332944 | -0.57332944 |
2022-05-29 21:00:00 | 21 | 0.0 | 0.0 | 0.0 | 1.1 | 0.0 | 0.0 | 2.0 | 0.4 | ⋯ | 293.729 | 296.529 | 299.329 | 292.029 | 297.329 | 295.229 | NA | NA | -0.43385866 | -0.43385866 |
2022-05-29 22:00:00 | 22 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | ⋯ | 293.085 | 296.385 | 298.585 | 291.585 | 296.685 | 294.785 | NA | NA | 0.07357205 | 0.07357205 |
2022-05-29 23:00:00 | 23 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | ⋯ | 292.407 | 295.707 | 297.707 | 291.207 | 296.007 | 294.107 | NA | NA | 0.12873935 | 0.12873935 |
NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | ⋯ | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | ⋯ | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |